Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 601
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(20): e2318773121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38713628

RESUMEN

The current paradigm about the function of T cell immune checkpoints is that these receptors switch on inhibitory signals upon cognate ligand interaction. We here revisit this simple switch model and provide evidence that the T cell lineage protein THEMIS enhances the signaling threshold at which the immune checkpoint BTLA (B- and T-lymphocyte attenuator) represses T cell responses. THEMIS is recruited to the cytoplasmic domain of BTLA and blocks its signaling capacity by promoting/stabilizing the oxidation of the catalytic cysteine of the tyrosine phosphatase SHP-1. In contrast, THEMIS has no detectable effect on signaling pathways regulated by PD-1 (Programmed cell death protein 1), which depend mainly on the tyrosine phosphatase SHP-2. BTLA inhibitory signaling is tuned according to the THEMIS expression level, making CD8+ T cells more resistant to BTLA-mediated inhibition than CD4+ T cells. In the absence of THEMIS, the signaling capacity of BTLA is exacerbated, which results in the attenuation of signals driven by the T cell antigen receptor and by receptors for IL-2 and IL-15, consequently hampering thymocyte positive selection and peripheral CD8+ T cell maintenance. By characterizing the pivotal role of THEMIS in restricting the transmission of BTLA signals, our study suggests that immune checkpoint operability is conditioned by intracellular signal attenuators.


Asunto(s)
Linfocitos T CD8-positivos , Receptores Inmunológicos , Transducción de Señal , Receptores Inmunológicos/metabolismo , Animales , Ratones , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Humanos , Linfocitos T/inmunología , Linfocitos T/metabolismo , Diferenciación Celular , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo
2.
Sci Rep ; 14(1): 9128, 2024 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-38644382

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. Macrophage-mediated innate immune responses play a crucial role in tumor development. This study revealed the mechanism of SHP-1 in regulating HCC progression. SHP-1 inhibits tumour development in vivo. Increasing SHP-1 expression in macrophages promotes the expression of p-SHP-1, SHP2, and p-SHP-2. In macrophages GM-CSF recruits SHP-2 to the GM-CSF receptor GM-CSFR induces p-SHP-2 dephosphorylation. GM-CSF recruits p-SHP-2 for dephosphorylation by up-regulating HoxA10HOXA10 activates the transcription of TGFß2 by interacting with tandem cis-elements in the promoter thereby regulating the proliferation and migration of liver cancer cells. GM-CSF inhibits SHP-1 regulation of p-SHP-1, SHP2, and p-SHP-2 in macrophages. Detailed studies have shown that SHP-1 regulates SHP2 expression, and SHP-1 and SHP2 are involved in macrophage M2 polarisation. SHP-1 inhibits HOXA10 and TGFß2 which in turn regulates the expression of the migration-associated proteins, MMP2/9, and the migration of hepatocellular carcinoma cells. Overexpression of SHP-1 inhibits macrophage M2 polarisation via the p-STAT3/6 signalling pathway Classical markers arginase-1, CD206, CD163 and regulate the expression of M2 polarisation cytokines IL-4 and IL-10. In addition, hypoxia-induced ROS inhibited SHP-1 regulation by suppressing the expression of p-SHP-1. The combined effect of GM-CSF and ROS significantly increased p-HOXA10/TGFß2 and macrophage M2 polarisation, and the regulatory effect of ROS was significantly suppressed by GM-CSF knockdown. These findings suggest that increasing the expression of tyrosine phosphatase SHP-1 can inhibit hepatocellular carcinoma progression by modulating the SHP2/GM-CSF pathway in TAM and thus inhibit the progression of hepatocellular carcinoma.


Asunto(s)
Carcinoma Hepatocelular , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Neoplasias Hepáticas , Macrófagos , Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteína Tirosina Fosfatasa no Receptora Tipo 6 , Transducción de Señal , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Humanos , Animales , Macrófagos/metabolismo , Macrófagos/inmunología , Ratones , Progresión de la Enfermedad , Línea Celular Tumoral , Proliferación Celular , Movimiento Celular , Regulación Neoplásica de la Expresión Génica
3.
J Biomed Sci ; 31(1): 33, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38532423

RESUMEN

BACKGROUND: T cell receptor (TCR) signaling and T cell activation are tightly regulated by gatekeepers to maintain immune tolerance and avoid autoimmunity. The TRAIL receptor (TRAIL-R) is a TNF-family death receptor that transduces apoptotic signals to induce cell death. Recent studies have indicated that TRAIL-R regulates T cell-mediated immune responses by directly inhibiting T cell activation without inducing apoptosis; however, the distinct signaling pathway that regulates T cell activation remains unclear. In this study, we screened for intracellular TRAIL-R-binding proteins within T cells to explore the novel signaling pathway transduced by TRAIL-R that directly inhibits T cell activation. METHODS: Whole-transcriptome RNA sequencing was used to identify gene expression signatures associated with TRAIL-R signaling during T cell activation. High-throughput screening with mass spectrometry was used to identify the novel TRAIL-R binding proteins within T cells. Co-immunoprecipitation, lipid raft isolation, and confocal microscopic analyses were conducted to verify the association between TRAIL-R and the identified binding proteins within T cells. RESULTS: TRAIL engagement downregulated gene signatures in TCR signaling pathways and profoundly suppressed phosphorylation of TCR proximal tyrosine kinases without inducing cell death. The tyrosine phosphatase SHP-1 was identified as the major TRAIL-R binding protein within T cells, using high throughput mass spectrometry-based proteomics analysis. Furthermore, Lck was co-immunoprecipitated with the TRAIL-R/SHP-1 complex in the activated T cells. TRAIL engagement profoundly inhibited phosphorylation of Lck (Y394) and suppressed the recruitment of Lck into lipid rafts in the activated T cells, leading to the interruption of proximal TCR signaling and subsequent T cell activation. CONCLUSIONS: TRAIL-R associates with phosphatase SHP-1 and transduces a unique and distinct immune gatekeeper signal to repress TCR signaling and T cell activation via inactivating Lck. Thus, our results define TRAIL-R as a new class of immune checkpoint receptors for restraining T cell activation, and TRAIL-R/SHP-1 axis can serve as a potential therapeutic target for immune-mediated diseases.


Asunto(s)
Receptores de Antígenos de Linfocitos T , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF , Humanos , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Células Jurkat , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Transducción de Señal , Proteínas Tirosina Fosfatasas/genética , Proteínas Tirosina Fosfatasas/metabolismo , Fosforilación , Activación de Linfocitos , Tirosina/metabolismo
4.
Nutrients ; 16(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38474775

RESUMEN

Protein tyrosine phosphatases (PTPs) are pivotal contributors to the development of type 2 diabetes (T2DM). Hence, directing interventions towards PTPs emerges as a valuable therapeutic approach for managing type 2 diabetes. In particular, PTPN6 and PTPN9 are targets for anti-diabetic effects. Through high-throughput drug screening, quercetagitrin (QG) was recognized as a dual-target inhibitor of PTPN6 and PTPN9. We observed that QG suppressed the catalytic activity of PTPN6 (IC50 = 1 µM) and PTPN9 (IC50 = 1.7 µM) in vitro and enhanced glucose uptake by mature C2C12 myoblasts. Additionally, QG increased the phosphorylation of adenosine monophosphate-activated protein kinase (AMPK) and insulin-dependent phosphorylation of Akt in mature C2C12 myoblasts. It further promoted the phosphorylation of Akt in the presence of palmitic acid, suggesting the attenuation of insulin resistance. In summary, our results indicate QG's role as a potent inhibitor targeting both PTPN6 and PTPN9, showcasing its potential as a promising treatment avenue for T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Insulina/metabolismo , Fosforilación , Proteínas Tirosina Fosfatasas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo
5.
Sci Signal ; 17(817): eadg4422, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166031

RESUMEN

Thousand-and-one-amino acid kinase 3 (TAOK3) is a serine and threonine kinase that belongs to the STE-20 family of kinases. Its absence reduces T cell receptor (TCR) signaling and increases the interaction of the tyrosine phosphatase SHP-1, a major negative regulator of proximal TCR signaling, with the kinase LCK, a component of the core TCR signaling complex. Here, we used mouse models and human cell lines to investigate the mechanism by which TAOK3 limits the interaction of SHP-1 with LCK. The loss of TAOK3 decreased the survival of naïve CD4+ T cells by dampening the transmission of tonic and ligand-dependent TCR signaling. In mouse T cells, Taok3 promoted the secretion of interleukin-2 (IL-2) in response to TCR activation in a manner that depended on Taok3 gene dosage and on Taok3 kinase activity. TCR desensitization in Taok3-/- T cells was caused by an increased abundance of Shp-1, and pharmacological inhibition of Shp-1 rescued the activation potential of these T cells. TAOK3 phosphorylated threonine-394 in the phosphatase domain of SHP-1, which promoted its ubiquitylation and proteasomal degradation. The loss of TAOK3 had no effect on the abundance of SHP-2, which lacks a residue corresponding to SHP-1 threonine-394. Modulation of SHP-1 abundance by TAOK3 thus serves as a rheostat for TCR signaling and determines the activation threshold of T lymphocytes.


Asunto(s)
Proteínas Serina-Treonina Quinasas , Receptores de Antígenos de Linfocitos T , Linfocitos T , Animales , Humanos , Ratones , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Receptores de Antígenos de Linfocitos T/genética , Receptores de Antígenos de Linfocitos T/metabolismo , Linfocitos T/metabolismo , Treonina/metabolismo
6.
Eur J Med Chem ; 265: 116027, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38128236

RESUMEN

The Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1) is a convergent node for oncogenic cell-signaling cascades. Consequently, SHP1 represents a potential target for drug development in cancer treatment. The development of efficient methods for rapidly tracing and modulating the SHP1 activity in complex biological systems is of considerable significance for advancing the integration of diagnosis and treatment of the related disease. Thus, we designed and synthesized a series of imidazo[1,2,4] triazole derivatives containing salicylic acid to explore novel scaffolds with inhibitory activities and good fluorescence properties for SHP1. The photophysical properties and inhibitory activities of these imidazo[1,2,4] triazole derivatives (5a-5y) against SHP1PTP were thoroughly studied from the theoretical simulation and experimental application aspects. The representative compound 5p exhibited remarkable fluorescence response (P: 0.002) with fluorescence quantum yield (QY) of 0.37 and inhibitory rate of 85.21 ± 5.17% against SHP1PTP at the concentration of 100 µM. Furthermore, compound 5p showed obvious aggregation caused quenching (ACQ) effect and had high selectivity for Fe3+ ions, good anti-interference and relatively low detection limit (5.55 µM). Finally, the cellular imaging test of compound 5p also exhibited good biocompatibility and certain potential biological imaging application. This study provides a potential way to develop molecules with fluorescent properties and bioactivities for SHP1.


Asunto(s)
Proteínas Tirosina Fosfatasas , Transducción de Señal , Fluorescencia , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Triazoles/farmacología
7.
J Lipid Res ; 64(12): 100469, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37922990

RESUMEN

Deletion of the nuclear hormone receptor small heterodimer partner (Shp) ameliorates the development of obesity and nonalcoholic steatohepatitis (NASH) in mice. Liver-specific SHP plays a significant role in this amelioration. The gut microbiota has been associated with these metabolic disorders, and the interplay between bile acids (BAs) and gut microbiota contributes to various metabolic disorders. Since hepatic SHP is recognized as a critical regulator in BA synthesis, we assessed the involvement of gut microbiota in the antiobesity and anti-NASH phenotype of Shp-/- mice. Shp deletion significantly altered the levels of a few conjugated BAs. Sequencing the 16S rRNA gene in fecal samples collected from separately housed mice revealed apparent dysbiosis in Shp-/- mice. Cohousing Shp-/- mice with WT mice during a Western diet regimen impaired their metabolic improvement and effectively disrupted their distinctive microbiome structure, which became indistinguishable from that of WT mice. While the Western diet challenge significantly increased lipopolysaccharide and phenylacetic acid (PAA) levels in the blood of WT mice, their levels were not increased in Shp-/- mice. PAA was strongly associated with hepatic peroxisome proliferator-activated receptor gamma isoform 2 (Pparg2) activation in mice, which may represent the basis of the molecular mechanism underlying the association of gut bacteria and hepatic steatosis. Shp deletion reshapes the gut microbiota possibly by altering BAs. While lipopolysaccharide and PAA are the major driving forces derived from gut microbiota for NASH development, Shp deletion decreases these signaling molecules via dysbiosis, thereby partially protecting mice from diet-induced metabolic disorders.


Asunto(s)
Enfermedades Metabólicas , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Ácidos y Sales Biliares/metabolismo , Disbiosis/genética , Disbiosis/metabolismo , Lipopolisacáridos/metabolismo , Hígado/metabolismo , Enfermedades Metabólicas/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , ARN Ribosómico 16S/metabolismo
9.
J Lipid Res ; 64(11): 100454, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37827334

RESUMEN

Small heterodimer partner (SHP, Nr0b2) is an orphan nuclear receptor that regulates bile acid, lipid, and glucose metabolism. Shp-/- mice are resistant to diet-induced obesity and hepatic steatosis. In this study, we explored the potential role of SHP in the development of nonalcoholic steatohepatitis (NASH). A 6-month Western diet (WD) regimen was used to induce NASH. Shp deletion protected mice from NASH progression by inhibiting inflammatory and fibrotic genes, oxidative stress, and macrophage infiltration. WD feeding disrupted the ultrastructure of hepatic mitochondria in WT mice but not in Shp-/- mice. In ApoE-/- mice, Shp deletion also effectively ameliorated hepatic inflammation after a 1 week WD regimen without an apparent antisteatotic effect. Moreover, Shp-/- mice resisted fibrogenesis induced by a methionine- and choline-deficient diet. Notably, the observed protection against NASH was recapitulated in liver-specific Shp-/- mice fed either the WD or methionine- and choline-deficient diet. Hepatic cholesterol was consistently reduced in the studied mouse models with Shp deletion. Our data suggest that Shp deficiency ameliorates NASH development likely by modulating hepatic cholesterol metabolism and inflammation.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Colesterol/metabolismo , Colina , Inflamación/metabolismo , Hígado/metabolismo , Metionina , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo
10.
Kidney Int ; 104(4): 787-802, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37507049

RESUMEN

Both clinical and experimental data suggest that podocyte injury is involved in the onset and progression of diabetic kidney disease (DKD). Although the mechanisms underlying the development of podocyte loss are not completely understood, critical structural proteins such as podocin play a major role in podocyte survival and function. We have reported that the protein tyrosine phosphatase SHP-1 expression increased in podocytes of diabetic mice and glomeruli of patients with diabetes. However, the in vivo contribution of SHP-1 in podocytes is unknown. Conditional podocyte-specific SHP-1-deficient mice (Podo-SHP-1-/-) were generated to evaluate the impact of SHP-1 deletion at four weeks of age (early) prior to the onset of diabetes and after 20 weeks (late) of diabetes (DM; Ins2+/C96Y) on kidney function (albuminuria and glomerular filtration rate) and kidney pathology. Ablation of the SHP-1 gene specifically in podocytes prevented and even reversed the elevated albumin/creatinine ratio, glomerular filtration rate progression, mesangial cell expansion, glomerular hypertrophy, glomerular basement membrane thickening and podocyte foot process effacement induced by diabetes. Moreover, podocyte-specific deletion of SHP-1 at an early and late stage prevented diabetes-induced expression of collagen IV, fibronectin, transforming growth factor-ß, transforming protein RhoA, and serine/threonine kinase ROCK1, whereas it restored nephrin, podocin and cation channel TRPC6 expression. Mass spectrometry analysis revealed that SHP-1 reduced SUMO2 post-translational modification of podocin while podocyte-specific deletion of SHP-1 preserved slit diaphragm protein complexes in the diabetic context. Thus, our data uncovered a new role of SHP-1 in the regulation of cytoskeleton dynamics and slit diaphragm protein expression/stability, and its inhibition preserved podocyte function preventing DKD progression.


Asunto(s)
Diabetes Mellitus Experimental , Nefropatías Diabéticas , Podocitos , Animales , Ratones , Diabetes Mellitus Experimental/inducido químicamente , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/prevención & control , Nefropatías Diabéticas/metabolismo , Podocitos/patología , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Quinasas Asociadas a rho/metabolismo , Sumoilación
11.
Front Immunol ; 14: 1119350, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37334382

RESUMEN

SHP1 and SHP2 are SH2 domain-containing proteins which have inhibitory phosphatase activity when recruited to phosphorylated ITIMs and ITSMs on inhibitory immune receptors. Consequently, SHP1 and SHP2 are key proteins in the transmission of inhibitory signals within T cells, constituting an important point of convergence for diverse inhibitory receptors. Therefore, SHP1 and SHP2 inhibition may represent a strategy for preventing immunosuppression of T cells mediated by cancers hence improving immunotherapies directed against these malignancies. Both SHP1 and SHP2 contain dual SH2 domains responsible for localization to the endodomain of inhibitory receptors and a protein tyrosine phosphatase domain which dephosphorylates and thus inhibits key mediators of T cell activation. We explored the interaction of the isolated SH2 domains of SHP1 and SHP2 to inhibitory motifs from PD1 and identified strong binding of both SH2 domains from SHP2 and more moderate binding in the case of SHP1. We next explored whether a truncated form of SHP1/2 comprising only of SH2 domains (dSHP1/2) could act in a dominant negative fashion by preventing docking of the wild type proteins. When co-expressed with CARs we found that dSHP2 but not dSHP1 could alleviate immunosuppression mediated by PD1. We next explored the capacity of dSHP2 to bind with other inhibitory receptors and observed several potential interactions. In vivo we observed that the expression of PDL1 on tumor cells impaired the ability of CAR T cells to mediate tumor rejection and this effect was partially reversed by the co-expression of dSHP2 albeit at the cost of reduced CAR T cell proliferation. Modulation of SHP1 and SHP2 activity in engineered T cells through the expression of these truncated variants may enhance T cell activity and hence efficacy in the context of cancer immunotherapy.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Proteína Tirosina Fosfatasa no Receptora Tipo 6 , Linfocitos T , Proteínas Portadoras , Inmunidad , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas/metabolismo , Linfocitos T/metabolismo
12.
Front Immunol ; 14: 1139326, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37006301

RESUMEN

Introduction: To achieve a healthy and functional immune system, a delicate balance exists between the activation of conventional T cells (Tcon cells) and the suppression by regulatory T cells (Treg). The tyrosine phosphatase SHP-1, a negative regulator of TCR signaling, shapes this 'activation-suppression' balance by modulating Tcon cell resistance to Treg-mediated suppression. Treg cells also express SHP-1, but its role in influencing Treg function is still not fully understood. Methods: We generated a Treg-specific SHP-1 deletion model, Foxp3Cre+ Shp-1f/f , to address how SHP-1 affects Treg function and thereby contributes to T cell homeostasis using a combination of ex vivo studies and in vivo models of inflammation and autoimmunity. Results: We show that SHP-1 modulates Treg suppressive function at different levels. First, at the intracellular signaling level in Treg cells, SHP-1 attenuates TCR-dependent Akt phosphorylation, with loss of SHP-1 driving Treg cells towards a glycolysis pathway. At the functional level, SHP-1 expression limits the in vivo accumulation of CD44hiCD62Llo T cells within the steady state Tcon populations (both CD8+ as well as CD4+ Tcon). Further, SHP-1-deficient Treg cells are less efficient in suppressing inflammation in vivo; mechanistically, this appears to be due to a failure to survive or a defect in migration of SHP-1-deficient Treg cells to peripheral inflammation sites. Conclusion: Our data identify SHP-1 as an important intracellular mediator for fine-tuning the balance between Treg-mediated suppression and Tcon activation/resistance.


Asunto(s)
Proteínas Tirosina Fosfatasas , Linfocitos T Reguladores , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Receptores de Antígenos de Linfocitos T
13.
J Exp Med ; 220(7)2023 07 03.
Artículo en Inglés | MEDLINE | ID: mdl-37067793

RESUMEN

The T-lineage restricted protein THEMIS has been shown to play a critical role in T cell development. THEMIS, via its distinctive CABIT domains, inhibits the catalytic activity of the tyrosine phosphatase SHP1 (PTPN6). SHP1 and THEMIS bind to the ubiquitous cytosolic adapter GRB2, and the purported formation of a tri-molecular THEMIS-GRB2-SHP1 complex facilitates inactivation of SHP1 by THEMIS. The importance of this function of GRB2 among its numerous documented activities is unclear as GRB2 binds to multiple proteins and participates in several signaling responses in thymocytes. Here, we show that similar to Themis-/- thymocytes, the primary molecular defect in GRB2-deficient thymocytes is increased catalytically active SHP1 and the developmental block in GRB2-deficient thymocytes is alleviated by deletion or inhibition of SHP1 and is exacerbated by SHP1 overexpression. Thus, the principal role of GRB2 during T cell development is to promote THEMIS-mediated inactivation of SHP1 thereby enhancing the sensitivity of TCR signaling in CD4+CD8+ thymocytes to low affinity positively selecting self-ligands.


Asunto(s)
Proteína Adaptadora GRB2 , Proteína Tirosina Fosfatasa no Receptora Tipo 6 , Receptores de Antígenos de Linfocitos T , Timocitos , Diferenciación Celular , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Transducción de Señal , Timocitos/metabolismo , Proteína Adaptadora GRB2/metabolismo
14.
Molecules ; 28(6)2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36985458

RESUMEN

Src homology 2 domain-containing protein tyrosine phosphatase 1 (SHP1), a non-receptor member of the protein tyrosine phosphatase (PTP) family, negatively regulates several signaling pathways that are responsible for pathological cell processes in cancers. In this study, we report a series of 3-amino-4,4-dimethyl lithocholic acid derivatives as SHP1 activators. The most potent compounds, 5az-ba, showed low micromolar activating effects (EC50: 1.54-2.10 µM) for SHP1, with 7.63-8.79-fold maximum activation and significant selectivity over the closest homologue Src homology 2 domain-containing protein tyrosine phosphatase 2 (SHP2) (>32-fold). 5az-ba showed potent anti-tumor effects with IC50 values of 1.65-5.51 µM against leukemia and lung cancer cells. A new allosteric mechanism of SHP1 activation, whereby small molecules bind to a central allosteric pocket and stabilize the active conformation of SHP1, was proposed. The activation mechanism was consistent with the structure-activity relationship (SAR) data. This study demonstrates that 3-amino-4,4-dimethyl lithocholic acid derivatives can be selective SHP1 activators with potent cellular efficacy.


Asunto(s)
Proteínas Tirosina Fosfatasas , Transducción de Señal , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Fosforilación
15.
Dis Model Mech ; 16(2)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36645087

RESUMEN

PTPN6 encodes SHP1, a protein tyrosine phosphatase with an essential role in immune cell function. SHP1 mutations are associated with neutrophilic dermatoses and emphysema in humans, which resembles the phenotype seen in motheaten mice that lack functional SHP1. To investigate the function of Shp1 in developing zebrafish embryos, we generated a ptpn6 knockout zebrafish line lacking functional Shp1. Shp1 knockout caused severe inflammation and lethality around 17 days post fertilization (dpf). During early development, the myeloid lineage was affected, resulting in a decrease in the number of neutrophils and a concomitant increase in the number of macrophages. The number of emerging hematopoietic stem and progenitor cells (HSPCs) was decreased, but due to hyperproliferation, the number of HSPCs was higher in ptpn6 mutants than in siblings at 5 dpf. Finally, the directional migration of neutrophils and macrophages was decreased in response to wounding, and fewer macrophages were recruited to the wound site. Yet, regeneration of the caudal fin fold was normal. We conclude that loss of Shp1 impaired neutrophil and macrophage function, and caused severe inflammation and lethality at the larval stage.


Asunto(s)
Inflamación , Pez Cebra , Animales , Humanos , Ratones , Inflamación/genética , Células Mieloides/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Pez Cebra/metabolismo , Larva
16.
Sci Adv ; 9(1): eade3942, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36608128

RESUMEN

Mice with SHP1 proteins, which have a single amino acid substitution from tyrosine-208 residue to asparagine (hereafter Ptpn6spin mice), develop an autoinflammatory disease with inflamed footpads. Genetic crosses to study CD47 function in Ptpn6spin mice bred Ptpn6spin × Cd47-/- mice that were not born at the expected Mendelian ratio. Ptpn6spin bone marrow cells, when transferred into lethally irradiated Cd47-deficient mice, caused marked weight loss and subsequent death. At a cellular level, Ptpn6-deficient neutrophils promoted weight loss and death of the lethally irradiated Cd47-/- recipients. We posited that leakage of gut microbiota promotes morbidity and mortality in Cd47-/- mice receiving Ptpn6spin cells. Colonic cell death and gut leakage were substantially increased in the diseased Cd47-/- mice. Last, IL-1 blockade using anakinra rescued the morbidity and mortality observed in the diseased Cd47-/- mice. These data together demonstrate a protective role for CD47 in tempering pathogenic neutrophils in the Ptpn6spin mice.


Asunto(s)
Antígeno CD47 , Neutrófilos , Animales , Ratones , Neutrófilos/metabolismo , Antígeno CD47/genética , Inflamación/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo
17.
Oncogene ; 42(6): 409-420, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36482202

RESUMEN

SHP1, a tyrosine phosphatase, negatively regulates B-cell receptor (BCR) signaling. Ibrutinib selectively inhibits BTK and has been approved for the treatment of several types of B-cell lymphomas, but not yet in diffuse large B-cell lymphoma (DLBCL). A phase 3 clinical trial of ibrutinib-containing regimen has been completed to evaluate its activity in subtypes or subsets of DLBCL patients. Although the subtype of activated B-cell like (ABC) DLBCL is characterized by chronic active BCR signaling, only a fraction of ABC-DLBCL patients seem to benefit from ibrutinib-containing regimen. New alternative predictive biomarkers are needed to identify patients who better respond. We investigated if SHP1 plays a role in defining the level of the BCR activity and impacts the response to ibrutinib. A meta-analysis revealed that lack of SHP1 protein expression as well as SHP1 promoter hypermethylation is strongly associated with NHL including DLBCL. On a tissue microarray of 95 DLBCL samples, no substantial difference in SHP1 expression was found between the GCB and non-GCB subtypes of DLBCL. However, we identified a strong reverse correlation between SHP1 expression and promoter methylation suggesting that promoter hypermethylation is responsible for SHP1 loss. SHP1 knockout in BCR-dependent GCB and ABC cell lines increased BCR signaling activities and sensitize lymphoma cells to the action of ibrutinib. Rescue of SHP1 in the knockout clones, on the other hand, restored BCR signaling and ibrutinib resistance. Further, pharmacological inhibition of SHP1 in both cell lines and patient-derived primary cells demonstrate that SHP1 inhibition synergized with ibrutinib in suppressing tumor cell growth. Thus, SHP1 loss may serve as an alternative biomarker to cell-of-origin to identify patients who potentially benefit from ibrutinib treatment. Our results further suggest that reducing SHP1 pharmacologically may represent a new strategy to augment tumor response to BCR-directed therapies. Schematic diagram summarizing the major findings. Left panel. When SHP1 is present and functional, it negatively regulates the activity of the BCR pathway. Right pane. When SHP1 is diminished or lost, cells depend more on the increased BCR signaling and making them vulnerable to BTK inhibitor, ibrutinib. Diagram was generated using BioRender.


Asunto(s)
Linfoma de Células B Grandes Difuso , Transducción de Señal , Humanos , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/uso terapéutico , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/genética , Linfoma de Células B Grandes Difuso/metabolismo , Línea Celular Tumoral , Biomarcadores
18.
J Cancer Res Ther ; 19(Suppl 2): S551-S559, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38384018

RESUMEN

ABSTRACTS: Aberrant methylation pattern leads to altered gene expression, that is, involved in the transformation of various cancers, including oral squamous cell carcinoma (OSCC). In the present study, an attempt has been made to examine the association of global and promoter-specific methylation of tumor suppressor genes in patients with OSCC and oral submucous fibrosis (OSMF). Promoter-specific methylation of tumor suppressor genes P16, SOCS1, and SHP1 had been studied earlier for their aberrant methylation patterns in other cancers; however, these studies were mainly conducted in-vitro or in animal models, and as such, only a few studies are available on human samples. In the present study evaluation of promoter-specific methylation of genes P16, SOCS1, and SHP1 in 76 patients' blood and tissue samples was done and compared with methylation of 35 healthy control samples using qPCR. Further, these samples were analyzed for global methylation patterns using ELISA. The results have shown a significant decreasing trend of promoter methylation (OSCC > OSMF > Controls); the methylation indices (MI) were significantly higher in OSCC than in the controls. The median MI of three genes for OSCC were P16MI (0.96), SHP1MI (0.79), and SOCS1 (0.80). Similarly, median MIs for OSMF were P16MI (0.18), SHP1 MI (0.19), and SOCS1 MI (0.5) against controls with MI (0) for each of the three genes. The global methylation %mC values were 1.9, 0.5, and 0.1, respectively. The values of MI and %mC were found to correlate with various risk factors such as tobacco, smoking, and alcohol consumption, which are positively involved in OSMF pathogenesis followed by oral cancer progression. Further, the methylation trend in tissue was reflected in blood samples, proving a window for methylation load to be used as a lesser invasive biomarker. The sensitivity and specificity of methylation load were also found reasonable. Therefore, the current study suggests that there may be a role of global and promoter-specific methylation load in the transition of OSMF to OSCC.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Neoplasias de la Boca , Fibrosis de la Submucosa Bucal , Humanos , Carcinoma de Células Escamosas/patología , Metilación de ADN , Genes Supresores de Tumor , Neoplasias de Cabeza y Cuello/genética , Neoplasias de la Boca/patología , Fibrosis de la Submucosa Bucal/genética , Fibrosis de la Submucosa Bucal/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Proteína 1 Supresora de la Señalización de Citocinas/genética , Proteína 1 Supresora de la Señalización de Citocinas/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo
19.
EMBO Rep ; 23(11): e55399, 2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36194675

RESUMEN

Anticancer T cells acquire a dysfunctional state characterized by poor effector function and expression of inhibitory receptors, such as PD-1. Blockade of PD-1 leads to T cell reinvigoration and is increasingly applied as an effective anticancer treatment. Recent work challenged the commonly held view that the phosphatase PTPN11 (known as SHP-2) is essential for PD-1 signaling in T cells, suggesting functional redundancy with the homologous phosphatase PTPN6 (SHP-1). Therefore, we investigated the effect of concomitant Ptpn6 and Ptpn11 deletion in T cells on their ability to mount antitumour responses. In vivo data show that neither sustained nor acute Ptpn6/11 deletion improves T cell-mediated tumor control. Sustained loss of Ptpn6/11 also impairs the therapeutic effects of anti-PD1 treatment. In vitro results show that Ptpn6/11-deleted CD8+ T cells exhibit impaired expansion due to a survival defect and proteomics analyses reveal substantial alterations, including in apoptosis-related pathways. These data indicate that concomitant ablation of Ptpn6/11 in polyclonal T cells fails to improve their anticancer properties, implying that caution shall be taken when considering their inhibition for immunotherapeutic approaches.


Asunto(s)
Linfocitos T CD8-positivos , Receptor de Muerte Celular Programada 1 , Linfocitos T CD8-positivos/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , Transducción de Señal
20.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36232407

RESUMEN

Ferroptosis is a type of iron-dependent cell death pertaining to an excess of lipid peroxidation. It has been suggested that sorafenib-an anti-angiogenic medication for hepatocellular carcinoma (HCC)-induces ferroptosis, but the underlying mechanism for this remains largely unknown. We employed siRNA-mediated gene silencing to investigate the role of Src homology region 2 domain-containing phosphatase-1 (SHP-1), following sorafenib treatment, in cystine/glutamate-antiporter-system-Xc--regulated cystine uptake. Co-immunoprecipitation was also performed to examine the interactions between MCL1, beclin 1 (BECN1), and solute carrier family 7 member 11 (SLC7A11), which functions as the catalytic subunit of system Xc-. The results of this study showed that sorafenib enhanced the activity of SHP-1, dephosphorylated STAT3, downregulated the expression of MCL1 and, consequently, reduced the association between MCL1 and BECN1. In contrast, increased binding between BECN1 and SLC7A11 was observed following sorafenib treatment. The elevated interaction between BECN1 and SLC7A11 inhibited the activity of system Xc-, whereas BECN1 silencing restored cystine intake and protected cells from ferroptosis. Notably, ectopic expression of MCL1 uncoupled BECN1 from SLC7A11 and rescued cell viability by attenuating lipid peroxidation. The results revealed that ferroptosis could be induced in HCC via SHP-1/STAT3-mediated downregulation of MCL1 and subsequent inhibition of SLC7A11 by increased BECN1 binding.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Antiportadores , Apoptosis , Beclina-1/metabolismo , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Línea Celular Tumoral , Cistina/metabolismo , Glutamatos/uso terapéutico , Humanos , Hierro/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 6/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 6/metabolismo , ARN Interferente Pequeño/uso terapéutico , Factor de Transcripción STAT3 , Sorafenib/farmacología , Sorafenib/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...